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Summary. The influence of unbalanced mating systems - 
factorial mating (FM) and random loss of families after a 
full diallel crossing (RS) - on the ultimate probability of 
gene fixation (u(II)) and the time required to fix or lose a 
gene (t(II)) are investigated. The average u(II) of  these 
systems is smaller than that of  random mating, and the 
range of u(II) for a given initial parental genotype combi- 
nation is very large (dose to one for most initial genotypic 
combinations). The average u(II) of  different parental 
genotypic combinations of  a given gene frequency are dif- 
ferent. These systems accelerate the t(II). 
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Introduction 

Random mating is one of the simplifying assumptions fre- 
quently used in theoretical studies of  artificial selection 
models. Under a single-locus monoecious-species model 
the mating outcome, viz. the progeny genotypic frequen- 
cy combination before selection, is in Hardy-Weinberg 
equilibrium. This assumption, however, is hard to realize 
in many breeding situations, and breeders are interested in 
Finding out the cost of  violating the random-mating as- 
sumption. 

In many models the random mating assumption fre- 
quently implies the success of all the zygotes until the 
time of artificial selection. Therefore, it is convenient to 
consider the mating period as the time between mating 
and artificial selection, and the mating outcome as a func- 
tion of all the factors that influence the population 
dynamics during that time. 

* This article was written and prepared by U.S. Government 
employees on official time, and it is therefore in the public do- 
main 

Some of the factors which influence the mating out- 
come are correlated with the locus of selection interest by 
means of linkage or by the pleiotropic effects of  the genes 
of  the locus. Other factors such as artificial mating systems, 
random sampling of progenies or progeny families before 
selection, and dioecious species also influence the final 
outcome of the mating but are not correlated with the 
genotypes. Hill and Robertson (1968) showed that 
dioecious populations are not much different from mono- 
ecious populations in the expected fitness when heterozy- 
gote genotypes are favored. Kang and Namkoong (1979) 
showed that balanced artificial mating systems such as 
pair mating, disconnected diallel, and partial diallel do not 
influence the probability of  gene fixation very much. The 
above two experiments represent similar situations in the 
sense that the matings do not alter the gene frequency of 
the population, and Kang and Namkoong concluded that 
as long as the mating does not change the gene frequen- 
cy, the influence of  the deviation of the genotypic fre- 
quency combination from Hardy-Weinberg equilibrium con- 
dition on ultimate probability ofgene fixation is negligible. 

This paper will discuss two situations where the gene 
frequencies are altered as the result of matings: (1) a 
factorial mating (Comstock and Robinson 1948) where 
the number of male testers is not equal to that of  female 
and (2) random sampling of families after a full diallel 
crossing. 

Models and Assumptions 

Genetic Model and Assumptions 

A genetic model of  two alleles, A and a, at a single locus 
in a diploid population is used for this study. The stan- 
dardized gene effect a (distance between the phenotypic 
values of homozygotes divided by the environmental 
standard deviation) is small. The three genotypes, AA, Aa, 
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and aa, of  this locus have genotypic values that are equal 
to their phenotypic means. The phenotypic values of the 
individuals are assumed to be identically and normally dis- 
tributed around the genotypic mean. The sources of the 
error are the segregation at other loci and the environment- 
al error. Because ot is small, the entire population is as- 
sumed to be normally distributed. The genotypes of the 
population do not have to be in Hardy-Weinberg equilib- 
rium. The population is closed and has discrete non-over- 
lapping generations with constant population size (N). 
The influence of mutation on the population structure is 
assumed to be negligible. 

Selection Model and Assumptions 

A generation, which comprises one cycle of selection, is 
divided into three successive stages: mating, mass selection, 
and sampling. During the mating stage a total of  N parents 
at time t are crossed randomly or in controlled design. All 
the progenies obtained from the crossing are allowed to 
develop until the time of artificial selection. The progeny 
population is assumed to be large, and natural selection is 
absent in the process. At the second stage a truncation 
selection is performed on the progeny population. The 
phenotypic performances of the members of the popula- 
tion are scored, and individuals with scores less than the 
truncation point are discarded. Since selection is applied 
on large populations, a constant truncation point which 
corresponds to a specific culling fraction is assumed to 
exist. Finally, N individuals to be used as parents at time 
t + 1 are sampled from the selected group. 

The selected cycle is repeated in the same environment 
until the population reaches the selection limit. The selec- 
tion intensity does not change with time. 

Computational Procedures 

Single Cycle of Selection 

subscripts 1, 2, and 3 refer to AA, Aa and aa individuals, 
respectively. In order to determine the transition prob- 
ability Qii it is necessary to find all the events and their 
probabilities associated with each step in a complete selec- 
tion cycle. The transition probability is then found by 
combining the probabilities of the events in the three 
steps. 

Mating 

The probability of obtaining a set of progeny genotypic 
frequency combinations given parents of N],t AA, N2, t 
Aa, and N3, t aa, where t is time in generations, and given 
a mating scheme will be represented as 

F I ] I 
0 k ( q k X ,  qk2, qk3 IN1,2, N2,t, Na,t, mating scheme) (1) 

where {qkl ' kth , qk2, qka} is the set of genotypic fre- 
quency combination in the progeny population before 
selection, and the prime implies that the statistics are ob- 
tained from the progeny population before selection. 

Given a set of parental combinations {N1 , t ,  N 2 , t ,  Na,t} 
the derived progeny set will vary depending on the mating 
system used in the model. The outcome of three different 
mating systems, random mating, factorial mating, and 
random sampling of families will be discussed. 

Random Mating (RM) 

In random mating, the proportion of the progeny geno- 
types is a function of parental gene frequencies. Assuming 
Hardy-Weinberg equilibrium in the progeny population, 
the frequencies of the three genotypes is uniquely deter- 
mined by the parental gene frequency. When there are 
X = 2N~ + N2 A alleles among the parents at generation t, 
the progeny genotypic frequency combination is: 

X 2 
{q,l,q~,q~} = { (2__~) 2, ( X )  ( 1 -  2 ~ ) '  ( 1 -  ~-~-) } 

The consequences of a single cycle of selection can be 
described by a transition matrix (Q) with rows represent- 
ing the genotypic combination of the parents at time t 
and columns representing that of parents at time t + 1. An 
element Qi i  o f  Q represents the transition probability of 

th th moving from i state to j state in one generation, where 
each state represents a unique combination of the numbers 
of three different genotypes AA, Aa, and aa. This probabil- 
ity is expressed as: 

Qij = P (Nl, t+l ,  N2,t+l, N3,t+l IN1 ,t, N2,t, N3,t) 

where N1, N2, and N 3 are arbitrary non-negative integers 
which satisfies the condition N1 + N2 + N3 = N, and the 

Factorial Mating (FM) 

In factorial mating N parents are divided into two groups 
and matings are made between, but not within, the groups. 
For example, N individuals may be divided into n tester 
males and N - n females in a dioecious species. Given N l ,t 
AA, N2, t Aa, and N3, t aa parents, a random subdivision 
of N parents into two groups whose sizes are n and m (= 
N - n) will also divide the three genotypes into two 
groups; nl AA, n2 Aa, and n2 aa will be in group 1 and 
m 1 AA, m2 Aa, and m3 aa will be in group 2 where ml = 
N~ ,t - -  n~, m 2 = N 2 ,  t - n2, and ma = N a , t  - n 3 .  Because 
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the subdivision of parents is made at random, nl ,  n2, and 
n3 are variable, positive, integers for which nl + n2 + n3 = 
n. There are (n + 1)(n + 2)/2 different possible combina- 
tions o f n t ,  n2, and na. We will use {nhl, nh2, nh3} to re- 
present the genotypic combination of a particular set of 
n testers, where h = 1, 2, 3 ..... (n + 1)(n + 2)/2. 

When the individuals in the two groups are crossed in 
the factorial manner, the number and the outcome of dif- 
ferent crossings will be as follows. 

Parental Number Mating outcome 
crossing of Progeny genotype 
type crossings AA Aa aa 

AA X AA n h l m h l  1 0 0 

AA X Aa nh lmh2 + nh2mhl  1/2 1/2 0 

AA X aa nh lmh3  + nh3mhl  0 1 0 

Aa X Aa nh2mh2 1/4 1/2 1/4 

Aa X aa nh2mh3 + hh3mh2 0 1/2 1/2 

aa X aa nh3mh3 0 0 1 

Let Mh be a 6 x 1 vector which represents the values in 
column 2 and C be a 6 x 3 matrix of values in columns 
3-5. 
Then, 

{qh 1, qh2, qh 3 } = MTC/IMh 
where 

l = 1 x 6 vector of 1 s, and 

T = transpose. 

The probability of sampling a particular tester genotypic 
combination {nh t, nh2, n h 3 }  from parents of {N 1,t, N2,t, 
N3,t} is: 

n h l  / nh2 / \ n h 3  / 

Although there is only one progeny genotypic frequency 
combination which corresponds to a given tester genotypic 
combination, matings performed using different tester 
genotypic combinations could result in the same progeny 

�9 �9 . t t t 

genotyplc frequency combination, say {qkl, qk2, qq3}" 
Therefore, the probability of obtaining {q~: 1, qk2, qk 3 } 

is the sum of the probabilities of sampling from the parents 
the tester genotypic combinations which produce {q~:l, 

t t 

qk2, qk3}, and 

0~ (qkl ' ' IN1 , qk3 ,t, N2, t ,  N3 , t ,  qk2, factorial mating) 

1 L ( N l , t ) ( N 2 , t ) ( N 3 , t )  

= [~2~1 \n~l / ~n~2 / \n~3 / ' 
tn! 

where L represents the number of the tester genotypic 
combinations which result in {qkl, qi,2, q[3}, and s in- 
dexes such tester genotypic combinations. 

Random Sampling of Families (RS) 

After a full diaUel crossing is made on a monoecious 
species a few families are randomly sampled, and only 
those sampled families are used as the basis for artificial 
selection. The sample families are assumed to be large and 
equal in size. This scheme is an extreme form of random 
family size variation in which there are only two types of 
family sizes; extremely large or none. 

Only one crossing combination exists in a full diallel 
crossing scheme given {N1 ,t, N2,t, N3,t}. The number of 
crosses for each of the six different types are as follows: 

Index Crossing Number of 
(g) type crossings 

1 AA X AA N 2 l , t  = M1 

2 AA X Aa 2Nt,  t N2, t = M 2 

3 AA X aa 2N1, t N3, t = M 3 

4 Aa X Aa N 2 2,t = M4 

5 Aa X aa 2N2, t N3, t = M s 

6 aa X aa N 2 3,t = M6 

If we randomly sample y families from the total of N 2 
families, yg families will come from gtn crossing type, 

6 
where y = Z yg. Let Yn be a 6 x 1 vector ofyhg obtain- 

g=l 
ed as the result of a particular sampling, say h. Then, 

t r I 

{qh 1, yTc/IYh qh2 ,  qh3}  = 

The probability of obtaining sample h is: 

(yMhll) (yMh:) (yMha3)(yMh44)(yMh: ) (yM~) 

As was the case in factorial mating, the probabilities of 
obtaining samples which result in the same progeny geno- 

l t t 

typic combination, say {qk 1, qk2, qk 3 }, can be added to- 
gether such that 

0~ (qkl, qk2, qk3 I Nl,t, N2,t, N3,t, Random Sampling of 
Families) 

= 1 ~ (yMll) (yM~)(yM3s ) (yM~)(yMSs)(yM~) 
- ~ )  ~= 1 
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Selection 

A truncation selection applied to the progeny population 
will produce a new set of  genotypic frequency combina- 
tions', say {qkt, qk2, qka }. The selection is made on a con- 
ceptually inf'mite population, and a fixed truncation point, 
r, is assumed to exist that satisfies the following equation 
(Hill 1969). 

qkl ~(--r +or/2)+ qk2 cI,(-r + ~.d/2) + qk3 qb(--T --a/2) = F, 

where 4(.)  is the distribution function of standardized 
normal distribution, N(0,1), 
d is the degree of  dominance, and 
F is the fraction selected. 

It is convenient to write the above formula as: 

q~,2 
q[1 cb(--r +a/2) + cb(--r +c~.d/2) F - V  

t 

qk3 
+ - F -  O ( - ~ - ~ / 2 )  = 1. 

The three terms on the left of the equal sign represent 
qk 1, qk2, and qka, respectively. 

Since the mode of selection is deterministic the proba- 
t r bility of obtaining {qkl, qk2, qka} from {q~l, qk2, qka} 

is 

Ok (qkl, qk2, qk3 I Nl,t,  N2,t, N3,t, Mating System) = 

0k (q~:l, qk2, qk3 I Nl,t,  N2,t, N3,t, Mating System). 

Sampling 

The probability (p) of randomly sampling { N l , t + l ,  
N2,t+l, N3,t+l} from {qkl, qk2, qk3} follows a multi- 
nomial distribution. Thus, 

pk(Nl,t+l,  N2,t+l, Na,t+l [ qkl, qk2, qk3) 

( ) 
Nl,t+l N2,t+l N3,t+l 

(qkl)Nl, t+l (qk2)N2, t+l (qk3)N3, t+l 

Synthesis 

Let there be K distinct progeny genotypic frequency 
combinations after selection {qkl, qk2, qk3 }- Each com- 
bination will occur with the probability Ok = 0'k, given 
{Nl,t, N2,t, Na,t }, and from each combination the parents 
for the next generation {N 1,t+1, N2,t+l, Na,t+I } will be 
sampled with the probability Pk. Therefore, the transition 
probability Qij is obtained by summing the K products of 
the two probabilities: 

K 
P(NI,t+I,N2,t+I,Na,t+I [Nl,t,N2,t,  Na,t)= ]~ 0k 'Pk  k=l 

For random mating, 

QiJ= Nl,t+l N2,t+l N3,t+l 

(qkl)Nl't+l 
For factorial mating, 

Nl,n+l! N2,n+l ! Na,n+l ! 
Qij = (N - n)! 

K 
(qkl) Nl,t+l (qk2)N2, t+l 

k=l 

For random sampling of families, 

Qij = 
Nl,t+ x N N3 t+l) N2.t+l , 

K )Nk,t+ 1 
(qkl 

k= 1 

(qk2)N2, t+l (qk3)N3, t+l 

~=1 \n~l / \n~2 / xn~3 / X 

(qk3) Na't+ 1. 

(qk2) N2't+ 1 (qk3) N3't+ 1. 

Transition Probabilities - Maximum and Minimum 

For simplicity, we will use {Ok} to represent {qkl, qk2, 
qk3} and {Ok} to represent {qkl, qk2, qka}. Contrary to 
random mating where only one progeny genotypic fre- 
quency combination (Hardy-Weinberg equilibrium) is 
produced from mating, factorial mating (FM) and random 
sampling of families (RS) yield more than one possible 
progeny genotypic frequency combination {0k}. There- 
fore in these mating systems the Qij is the average proba- 
bility of obtaining jth parental combination at t + 1 from 
all the possible {0 k} of i th parental combination of t. 
After selection, the genotypic frequency combination will 
be changed to produce {Ok}, and it is possible to rank 
gene frequencies of {Ok}' The {Ok} with the largest or the 
smallest gene frequency will be represented as {0max} or 
{0rain} , respectively. It is interesting to see the conse- 
quences of repeatedly choosing {0m ax } or {0m in } in a re- 
current selection scheme. 

The transition probability Qijmax is: 

(Nl,t+ 1 N N 3 t + , ) ( q m a x  ,)  Nl ' t+'  N2,t+l , 

(qmax 2) N2't+l (qmax 3) N3't+l. 

where qmax 1 = freq (AA) of the maximum combination 
after selection, qm ax 2 = freq (Aa) of the maximum com- 
bination after selection, 
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and qmax a = freq (aa) of  the maximum combinat ion 
after selection. Qijmin is obtained by  replacing the sub- 
script max with min. 

Ultimate Probability o f  Gene Fixation and Time Required 
to Reach Fixation or Loss 

Because the generations are discrete, transit ion probabili-  
ties are independent  o f  t ime t, and the selection criteria 
do not  change, recurrent selection follows a Markov 
process. The vector o f  the ul t imate probabilit ies o f  gene 
fixation is obtained by  (Carr and Nassar 1970a): 

p(I I )  = ( I - P )  -1 r 

where I is a ( H - 2 )  x ( H - 2 )  ident i ty  matrix,  P is a ( H - 2 )  
x ( H - 2 )  matr ix of  transient states, r is a (1-I-2) x 1 
vector o f  transition probabili t ies from transient states to 
the f ixation state, II is the initial parental  genotypic com- 
bination,  and H is the total  number o f  possible genotypic 
frequency combinat ion given N. 

The t ime required to reach fixation or loss is obtained 
by (Carr and Nassar 1970b): 

t ( I I )  = ( I - P )  -1 l where l is a ( H - 2 )  x 1 vector of  Is. The 
notat ions u( l I )  and tOO will be used to represent the 
statistics obtained from the transit ion matr ix  o f  average 
probabilit ies and u(II)max (or rain) and t ( r l )max (or rain) 
will be used for those obtained from maximum or mini- 
mum probabilities. 

Results 

The primary objective of  this s tudy is to determine the in- 
fluence o f  mating systems on a single cycle o f  selection 
and on the selection limit. Therefore, the discussion o f  
results is structured such that  the feature which distin- 
guishes the mating outcomes of  unbalanced matings from 
those o f  balanced matings is identif ied first. Then, the 
combined effect o f  mating, selection, and sampling on a 
single cycle o f  selection is discussed. Finally, the influence 
of  mating system on selection limit is presented. 

Table 1. Progeny genotypic combinations and related statistics. 
N = 8, factorial mating, parental gene frequency (q) 

No. of testers Index Gene Genotypic frequency 
(No. crossings) (k) frequency 

(qk) qkl qk2 qks ok(.) 

1 1 0.28571 0 0.57143 0.42857 0.25 
(7) 2 0.5 0.25 0.5 0.25 0.5 

3 0.71429 0.42857 0.57143 0 0.25 
~7 0.5 

v(q') 0.023 

1 0.33333 0 0.66667 0.33333 0.03571 
2 0.41667 0.14583 0.54167 0.3125 0.28571 

2 3 0.5 0.25 0.5 0.25 0.35714 
(12) 4 0.58333 0.3125 0.54167 0.14583 0.28571 

5 0.66667 0.33333 0.66667 0 0.03571 
0.5 

v(q') 

3 
(15) 

1 0.43333 0.11667 0.63333 0.25 0.07143 
2 0.46667 0.2 0.53333 0.26667 0.25 
3 0.5 0.25 0.5 0.25 0.35714 
4 0.53333 0.26667 0.53333 0.2 0.25 
5 0.56667 0.25 0.63333 0.11667 0.07143 

05 
v(q') 0.004 

4 1 0.5 0.1875 0.625 0.1875 0.17143 
(16) 2 0.5 0.23438 0.53125 0.23438 0.45714 
Partial 3 0.5 0.25 0.5 0.25 0.37143 
Diallel ~ 0.5 

v(q') 0 

ok(- ) ffi Probability of obtaining k th progeny genotypic combination, {qkl, qk2, qk3}; ~ = average 
progeny gene frequency; v(q') = variance of progeny gene frequency 
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Mating Outcome 

From a set of parents the mating systems, factorial mating 
(FM) and random sampling of families (RS) can generate 
many progeny genotypic combinations {0k } with different 
gene frequencies (Tables 1 and 2). Variance in progeny 
gene frequency (V(q')) distinguishes these mating systems 
from balanced matings. The variance results from the un- 
balanced representation of parents during the mating 

period. The average progeny gene frequency (q') of  all 
possible mating outcomes is the same as the parental 
gene frequency (q). 

Variance and range of progeny frequency decrease as 
the number of testers (or number of families sampled) in- 
crease. When N = 4, the variance of FM is comparable to 
that of  RS with four crossings (Table 2). Because only 
three crossings are involved in FM, the small difference in 
progeny gene frequency variation v(q') between the two 

Table 2. Progeny genotypic combinations and related statistics a. 
N = 4, FM and RS, q = 0.5,H = (1, 2, 1) 

Mating Sample Index Gene Genotypic frequency 
sy stem size (k) frequency 

(qk) qkl qk2 

FM 1 tester 

RS 

1 family 

qi~3 0k(') 

1 0.33333 0 0.66667 0.33333 0.25 
2 0.5 0.25 0.5 0.25 0.5 
3 0.66667 0.33333 0.66667 0 0.25 

0.5 
v(q') 0.014 

2 family 

4 family 

6 family 

1 0 0 0 1 0.0625 
2 0.25 0 0.5 0.5 0.25 
3 0.5 0.25 0.5 0.25 0.25 
4 0 0.1 0 0.125 
5 0.75 0.5 0.5 0 0.25 
6 1 1 0 0 0.0625 

0.s 
v(q') 0.0625 

1 0.125 0 0.25 0.75 0.03333 
2 0.25 0 0.5 0.5 0.06667 
3 0.125 0.25 0.625 0.03333 
4 0.375 0.125 0.5 0.375 0.13333 
5 0 0.75 0.25 0.06667 
6 0.25 0.25 0.5 0.03333 
7 0.5 0.5 0 0.5 0.00833 
8 0.25 0.5 0.25 0.18333 
9 0.125 0.75 0.125 0.06667 

10 0 0.1 0 0.00833 
11 0.625 0.5 0.25 0.25 0.03333 
12 0.375 0.5 0.125 0.13333 
13 0.25 0.75 0 0.06667 
14 0.75 0.675 0.25 0.125 0.03333 
15 0.5 0.5 0 0.06667 
16 0.875 0.75 0.25 0 0.03333 

0.5 
v(q') 0.029 

1 0.1875 0 0.375 0.625 0.0022 
37 0.8125 0.625 0.375 0 0.0022 

0.s 
v(q') 0.012 

1 0.25 0 0.5 0.5 0.00025 
55 0.75 0.5 0.5 0 0.00025 

0.007 

a Note that there are 37 and 
spectively 

55 different combinations for RS (4 family) and RS (6 family), re- 



H. Kang and G. Namkoong: Limits of Artificial Selection Under Unbalanced Mating Systems 187 

Table 3. Probabilities of losing a favorable allele (A) when cross- 
ings are randomly sampled after a full diaUel a 

H q Number of samples (families) 

(AA Aa aa) 1 2 4 6 

0 1 3 0.125 0.5625 0.3 0.06923 0.01049 
0 2 2 0.25 0.25 0.05 0.00055 0 
0 3 1 0.375 0.0625 0 0 0 
0 4 0 0.5 0 0 0 0 
1 0 3 0.25 0.5625 0.3 0.06923 0.01049 
1 1 2 0.375 0.25 0.05 0.00055 0 
1 2 1 0.5 0.0625 0 0 0 
1 3 0 0.625 0 0 0 0 
2 0 2 0.5 0.25 0.05 0.00055 0 
2 1 1 0.625 0.0625 0 0 0 
2 2 0 0.75 0 0 0 0 
3 0 1 0.75 0.0625 0 0 0 
3 1 0 0.875 0 0 0 0 

a The probabilities of f'txing an undesirable allele are the same if A 
is assumed to be an inferior allele 

systems suggests that FM generates smaller variance than 
RS for a given number of  families sampled. A similar con- 
clusion may be made when the ranges of  extreme out- 
comes are compared. When N = 4, the gene frequency 
range of FM is smaller than that of  RS (Table 2). In FM, 
the variance and range of the outcome seem to depend 
more on the degree of balanced representation of parents 
than the number of  crossings. For example, when N = 8 
(one tester), seven crossings are made but when N = 4 on- 
ly three crossings are possible. However, V(q') and range 
of  FM is smaller when N = 4 (Tables 1 and 2). 

In factorial mating all the parents are represented in 
the crossings at least once: Although the progeny gene 
frequency may change due to the unbalanced representa- 
tion of  parents, the systematic mating control in FM pre- 
vents the loss of  alleles due to crossing. Sampling of fami- 
lies in RS is not restricted and it is possible to have a set 
of  samples that exclude some parents. Therefore, it is pos- 
sible to lose alleles in this scheme. If  a certain fraction of 
progeny families are lost repeatedly under recurrent selec- 
tion with RS, the loss probability would influence the 
population in a manner similar to that of  random drift. In 
this case the sampling of families is an indirect way of 
limiting the population size, and there are two stages of 
random drift in a selection cycle of  RS. 

Contrary to what one might expect, the probability of  
losing an allele is not directly related to q, but with the 
number of  inferior homozygotes (Table 3). For example, 
regardless of  the q, if the number of  aa genotypes is one 
and one family is sampled, the probability of loss due to 
mating is 0.0625. However, the average loss probability 
will depend on q when these probabilities are averaged 
for different parental genotype combinations of  a given q. 
The loss probability decreases as sample size increases. 

The Influence of  Mating on a Single Cycle of  Selection 

Average Statistics 

Given the mating system and population size, the average 
gene frequency of  the progeny population increases as the 
number of  testers (or sampled families) increases and the 
variance of  gene frequency and probability of  loss (or 
fixation) decreases (Table 4). It is not surprising to observe 
the decreases in variance and loss probability as the num- 
ber of  families (or testers) increases. But the change in 
the average is an unexpected result because the sample 
size in general does not influence the mean. This change 
seems to be due to the combined effect of  the variable 
mating outcomes and selection. 

When more than one mating outcome is possible, the 
amount of  gene frequency advance due to selection (Aq) 
will vary depending on the specific mating outcome. The 
average gene frequency advance (Aq) of the mating system 
can be calculated from the set of  Aq which corresponds to 
all possible mating outcomes. Under an additive gene 
model the gene frequency advance due to selection is 
maximum when the initial gene frequency is 0.5. There- 
fore, /Xq obtained from initial gene frequencies other than 
0.5 will be less than maximum. Regardless of the distri- 
butional properties of  the progeny gene frequency of 
mating outcomes, the average gene frequency advance will 
be smaller than Aq obtained from a single genotypic com- 
bination with q' = 0.5. Because both FM and RS generate 
more than one gene frequency other than 0.5, Aq will be 
smaller than Aq obtained from a random mating when 
q' = 0.5 (or the advance of the conceptual average gene 
frequency A T =  0.5). 

When qr'is not 0.5, the distribution of progeny gene 
frequencies becomes an important factor. For example, 

.-21.- when>q < 0.5 and the distribution is skewed to the left, 

A~r->__ Aq,. But when__-q'r< 0.5 and the distribution is 
skewed right, ~ __< Aq,. The distributions of progeny 
gene frequency of FM and RS, however, tend to be 
skewed to the right when"~'is smaller than 0.5 and to the 
left when qr-is larger than 0.5. The above distributional 
properties of FM and RS seem to have caused the values 
of  ~ to be smaller than those of A'fir-for all possible 
parental gene frequencies. The reduction in average gain 
seems to be most serious at the intermediate gene fre- 
quencies (Fig. 1). 

Maximum and Minimum Statistics 

When a RS system has only one sample, the probability of 
obtaining a genotype combination with smallest gene fre- 
quency is 0.0625 (Table 2). Although the probability is 
small, it is possible to obtain such minimum combinations, 
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Table 4. Summary of average transition probabilities when q = 0.5, II = (1, 2, 1) or (2, 4, 2), a = 0.2, F = 1, and 
additive gene action 

Population Mating Sample q V(q) p(loss)/gen p(fix)/gen Range 
size system size 

(qmax-qmin) 

Random 
mating 

Factorial 
mating 

Random 
sampling 

- 0.54374 0.03095 0.00186 0.00759 - 

1 0.53161 0.03648 0.00238 0.00864 0.33415 
tester 

1 0.52188 0.07823 0.07379 0.08626 1 
family 

2 0153355 0.05298 0.01864 0.03630 0.74895 
families 

4 0.53937 0.04038 0.0065 0.01803 0.62434 
families 

6 0.54132 0.03618 0.00405 0.01303 0.5066 
families 

Random 
mating 

Factorial 
mating 

- 0.54374 0.01547 346E-8 567E-7 - 

1 0.53259 0.03466 125E-6 6 4 3 E - 6  0.42897 
tester 

2 0.53855 0.01963 109E-7 113E-6 0.33416 
testers 

3 0.54022 0.01544 328E-8 488E-7 0.13324 
testers 

4 0.54061 0.01441 229E-8 3 7 1 E - 7  0.03563 
testers 

H H H 
q =  I~ qjQij;V(q)= E (qj-q)2Qij, and qmax(ormin)= E qjQijmax(ormin) 

j=l j=l j=l 

and we may observe the average range of possible out- 
comes of a complete cycle of  selection by comparing 
maximum and minimum statistics (Table 4). Given a 
system of mating, the average range of gene frequency 

(qm a x - q m  in) decreases as the number  of  testers (or fami- 
lies) increases, and FM have smaller ranges than RS. These 
trends are consistent with those observed in the discussion 
of the mating outcome, and the average range of gene fre- 
quency after a complete cycle of selection is primarily in- 
fluenced by the mating outcome. 

The average ranges of unbalanced mating systems are 
large when compared to those of balanced mating systems. 
For example, the range for the partial diallel (factorial 
with 4 testers) is 0.03563 (N = 8), and that for pair 
mating is .02184 (N = 4). The variances, which are not  
shown in Table 4, decrease as the number of testers (or 
families) decreases. This is because the gene frequencies 
of maximum or minimum mating outcomes become more 
extreme as the number  of testers (or families) decrease. 
This trend is more obvious in RS. 

m 

- 0 . 0 0 5  

- 0.01 

- 0,015 

- 0 .02  

- 0 . 0 2 5  

q 

0 .0625  0.125 0 .25  0 .325  0 .5  0 .625  0.75 Q 8 7 5  0.9375 

\, / /  
�9 ,~ ~ , ~ . ~ . ~ .  ~ r  / 

m FACTORIAL MATING, N=8,1 TESTER 

RANDOM SAMPLING, N=4,1 SAMPLE 

- - - - "  RANDOM SAMPLING, N=4, 6 SAMPLES 

- - -  RANDOM SAMPLING, N '4 ,  6 SAMPLES 

Fig. 1. The difference between the average gene frequency ad- 
vance (Aq) and the advance of average gene frequency (Aq,) at all 
possible parental gene frequencies (q). Note the exaggerated ordi- 
nate scales 
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The Influence o f  Mating on Selection Limits 

When N = 4, a = 0.2, and F = 0.1 in unbalanced mating 
systems, the average ultimate probability of gene fixation 
u(II) generally is depressed and the percent of the depres- 
sion is greater at lower initial gene frequency (Table 5, 
Fig. 2). The differences between unbalanced mating 
systems are relatively large compared to those observed in 
balanced mating systems. The largest difference in u(II) 
observed in any possible comparisons of balanced mating 
systems of  all possible initial gene frequencies is 0.00026, 
which is the difference between random mating and the 
half diallel (or partial diallel) when II = (1,0,3) (Kang 

and Namkoong 1979). The amount  of reduction in u(H) 
under RS decreases as the number  of families is increased. 
As was the case with the variance of progeny gene fre- 

quency V(q'), the performance in u(II) of  FM with 1 
tester (N = 4) was similar to that of  RS with 4 families. In 
factorial mating, the percent reduction in u(II) under  ad- 
ditive gene action tends to be greater than that under 
complete dominance. The opposite trend is observed in 
RS (Fig. 2). 

The magnitude of the V(q')  is determined not only by 
the mating system and the parental gene frequency but  al- 
so by the proportions of  the parental genotypes. For 
example, when q = 0.5 and only one genotype (Aa) is 
available among the parents, the progeny gene frequency 
has no variance. But the variance will increase as the 
parents become more homozygous - the more homozy- 
gous the founders, the lower the u(II) (Fig. 3). 

These results, in conjunction with the previous obser- 
vation that the loss probability of  a favorable allele due to 

Table 5. ~ and ~ of factorial mating design (FM) and random samplings of families after a 
random mating (RS). N = 4, a = 0.2, F = 0.1, additive 

II q RM FM-RM RS-RM 
1 tester Sample size 

1 2 4 6 

u~n3- 

0 0 4 0 0 0 0 0 0 
0 1 3 0.125 0.31575 -0.06044 -0.13990 -0.09905 -0.05642 
0 2 2 0.25 0.53761 -0.08043 -0.19701 -0.13479 -0.07423 
0 3 1 0.375 0.69357 -0.07704 -0.10033 -0.13210 -0.07062 
0 4 0 0.5 0.80324 -0.06122 -0.16646 -0.10761 -0.05625 
1 0 3 0.25 0.53761 -0.09814 -0.23632 -0.15495 -0.09347 
1 1 2 0.375 0.69357 -0.09187 -0.23591 -0.15832 -0.08541 
1 2 1 0.5 0.80324 -0.07361 -0.20032 -0.12948 -0.06755 
1 3 0 0.625 0.88042 -0.05024 -0.14334 -0.09041 -0.94619 
2 0 2 0.5 0.80324 -0.08600 -0.23485 -0.15210 -0.07917 
2 1 1 0.625 0.88042 -0.06057 -0.17515 -0.10912 -0.05501 
2 2 0 0.75 0.93475 -0.03443 -0.10369 -0.06340 -0.03150 
3 0 1 0.75 0.83475 -0.04302 -0.13346 -0.07927 -0.03834 
3 0 0.875 0.97302 -0.01715 -0.05432 -0.03209 -0.01548 
4 0 0 1 1 0 0 0 

0 
-0.03501 
-0.04533 
-0.04253 
-0.03353 
-0.05763 
-0.05161 
-0.04020 
-0.02724 
-0.04701 
-0.03222 
-0.01834 
-0.02204 
-0.00889 

0 

t-(~Y 

0 0 4 0 0 0 0 0 0 0 
0 1 3 0.125 6.2684 -0.8528 -3.6079 -2.4910 -1.3836 -0.8487 
0 2 2 0.25 8.5416 -0.8858 -4.6703 -3.1028 -1.6666 -1.0061 
0 3 1 0.375 9.1076 -0.6568 -4.4761 -2.8852 -1.5071 -0.8970 
0 4 0 0.5 8.6523 -0.4004 -3.7084 -2.3304 -1.1900 -0.7019 
1 0 3 0.25 8.5416 -1.1550 -5.6876 -3.9222 -2.1464 -1.3049 
1 1 2 0.375 9.1076 -0.7945 -5.2887 -3.4410 -1.8043 -1.0762 
1 2 1 0.5 8.6523 -0.4581 -4.3181 -2.7140 -1.3826 -0.8139 
1 3 0 0.625 7.5310 -0.2167 -3.1312 -1.9249 -0.9620 -0.5617 
2 0 2 0.5 8.6523 -0.5158 -5.1803 -3.1972 -1.6037 -0.9374 
2 1 1 0.625 7.5310 -0.2351 -3.7896 -2.2809 -1.1217 -0.6500 
2 2 0 0.75 5.8976 -0.0767 -2.3365 -1.3922 -0.6781 -0.3915 
3 0 1 0.75 5.8976 -0.0948 -3.0436 -1.7562 -0.8369 -0.4787 
3 1 0 0.875 3.7602 -0.0159 -1.3324 -0.7726 -0.3684 -0.2109 
4 0 0 1 0 0 0 0 0 0 
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Fig. 4. Ultimate probability of gene fixation u---(-~ under fractorial 
mating at various degrees of dominance 

RS is a function of the number of inferior homozygotes 
of the parents rather than the parental gene frequency, 
leads one to appreciate the importance of the genotypic 
structure of the founders under unbalanced mating 
systems. Kang and Namkoong (1979) found that under 
balanced mating systems the difference in u(II) among dif- 
ferent parental genotypic combinations which have the 
same gene frequency, (II[q) is negligible (< 10-4). Because 
V(q') is zero in balanced mating systems, the lack of  dif- 
ferences is readily explained, and it is worthwhile empha- 
sizing that the genotypic combination structure is impor- 
tant only when the matings are unbalanced. 

The differences in u(II) among different (IIlq)under 
balanced mating systems, however, have never been found 
to be greater than those found among different q. For 
example, the u(II) of the most heterozygous II with 
q -- 0.5 is smaller than that of the most homozygous II 
with q -- 0.625 (N = 4). The lack of overlap in u(II) among 
genotypic combinations of different gene frequencies 
could be due to the limited number of experiments that 
have been observed. 

In the factorial mating system the differences among 
various initial gene frequencies become smaller as the de- 
gree of dominance increases (Fig. 4). Strong selection for 
the heterozygote genotype under overdominance gene 
action seems to reduce the impact of random loss of the 
favorable allele with small initial gene frequencies. The 
fixation probability is initially reduced for alleles with a 
high initial frequency (q = 0.875) before it increases 
again. Overdominance gene action not only increases the 
u(II) with low initial frequency in an absolute sense, but 
also reduces the differences between random mating and 
factorial mating. 

The rate of loss (or fixation) under FM becomes faster 
than that of random mating as the degree of dominance 
increases (Fig. 5). This is contrary to the intuition that if 
the difference in u(II) between RM and FM becomes smal- 
ler because of the reduced loss probability, the time dif- 
ference should become smaller also. It is interesting to 
contrast the time required to reach homozygosity t(II) 
with FM with that of pair mating (PM). Although selfmgs 
are excluded in both FM and PM, FM is faster than RM 
and RM is faster than PM (Fig. 5). The exclusion of selFmgs 
in PM generates a set of progeny genotypic combinations 
whose average structure is more heterozygous than the 
Hardy-Weinberg combination. The retardation is due to 
the difference in genotypic proportions for a given gene 
frequency. In FM, on the other hand, the acceleration is 
primarily due to the variance in progeny gene frequency. 

Most of the ranges of [u(Tr)m~x-U(Zr)min ] in unbal- 
anced mating systems are close to one. This is opposite to 
the results observed in balanced mating systems, where 
largest observed range was 2.8 x 10 -4 (Kang and Nam- 
koong 1979). Factorial mating has a somewhat smaller 
range than RS. 
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Fig. 5. Rate of acceleration in the average fixation (time) of an 
allele under factorial and pair mating at various degrees of domi- 
nance. The speed under random mating is used as the standard 

In most breeding populations,  family sizes are unequal.  
Variation in family size could occur as the result o f  genetic 
correlation of  the trait  o f  interest with those that  influence 
family size. Under this type o f  si tuation the ult imate 
probabi l i ty  of  gene fixation will vary depending on the 
sign o f  the genetic correlation. It is, however, not  unusual 
to fred a situation where family size varies at random, and 
the populat ion size from which the selection is made is 
small. Therefore, one may expect  that  the average ulti- 
mate probabi l i ty  o f  gene fLxation under this type  of  situa- 
t ion will be smaller than tha t -ob ta ined  from balanced 
mating. 
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Discussion 

Unbalanced mating systems differ from random mating in 
several impor tant  ways: (1) u(II)  are smaller, (2) u(II)  of  
different parental  genotype combinat ions of  a given gene 
frequency (IIIq) are different and (3) the ranges o f  u( l I )  
are large. Variance in progeny gene frequency V(q ' )  is the 
factor that  is primarily responsible for the above out- 
comes. When combined with selection V(q ' )  will lower 
u(II)  as well as cause differences i n u ~  among different 
(IIIq). Without  selection U0I ) is not  depressed, but  as the 
selection intensity increases, so does the amount  of  depres- 
sion o f  U(II) (Fig. 6). The u(II)  is, o f  course, influenced by  
the populat ion size (N). The influence of  populat ion size 
on u(l-l) was not  discussed because we were primarily in- 
terested in observing the impact  of  having different mating 
systems given N. 
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